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Abstract
We introduce a new concept called a subtype universe, which is a collection of subtypes of a
particular type. Amongst other things, subtype universes can model bounded quantification without
undecidability. Subtype universes have applications in programming, formalisation and natural
language semantics. Our construction builds on coercive subtyping, a system of subtyping that
preserves canonicity. We prove Strong Normalisation, Subject Reduction and Logical Consistency
for our system via transfer from its parent system UTT[C]. We discuss the interaction between
subtype universes and other sorts of universe and compare our construction to previous work on
Power types.
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1 Introduction

In this paper we define a new sort of universe, which we call a subtype universe. The key
idea is embodied in the following two pseudo-rules:

UNIVERSE-FORM
Γ ⊢ A : Type

Γ ⊢ U(A) : Type

UNIVERSE-INTRO
Γ ⊢ B ≤ A

Γ ⊢ B : U(A)

The first rule states that for any type A, there is a type U(A) which we call the subtype
universe of A. The second rule states that any subtype of A is an object of U(A). U(A)
is therefore a type representing a collection of all subtypes of A. It is similar to universes
such as Type0 in that its objects are types (technically, names for types), but whilst Type0
contains all types (at the time of formation, at least), the membership of a type in U(A) is
based on the presence of a subtyping judgement between the type in question and A.

Subtype universes provide a simple model for bounded quantification, a concept first
introduced by Cardelli and Wegner for the language Fun[5]. Bounded quantification extends
the notion of parametric polymorphism with support for subtypes. In a system with support
for subtyping, the bounded quantifier ΠA ≤ B.T binds a type A in the body T under the
constraint that A is a subtype of B. In essence, bounded quantification allows a function to
be defined over all subtypes of a particular type.

A typical use of bounded quantification is in writing operations on records. Consider
a system with record types similar to [13], although for simplicity without dependence of
record fields on each other. We write record types as R := ⟨⟩ | ⟨R, l : A⟩ and records as
r := ⟨⟩ | ⟨r, l = a : A⟩. Record types each have a corresponding kind RType[L], where L is
the set of labels occurring in the record type. We can define the following function, which
translates a one-dimensional point by a given amount to the right.

translateX : Nat → ⟨x : Nat⟩ → ⟨x : Nat⟩
translateX(n, r) = set(r, x, r.x + n)
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⟨x : Nat⟩ is a record type containing a single field x of type Nat. set(r, l, a) is a primitive
operation on records which updates the record r, setting the value of the field labelled l to a.
r.l selects the value in the record r corresponding to the label l.

We may wish to apply this function to coordinates in higher dimensions, such as objects
of type ⟨x : Nat, y : Nat⟩. This prompts us to consider a subtyping relation for records, and
there is a natural one arising from the record restriction operator [r], which removes the
outermost field of a record: ⟨R, l : A⟩ ≤[_] R. In other words, any extension of a record type
R by additional fields produces a subtype of R. Thus we have ⟨x : Nat, y : Nat⟩ ≤ ⟨x : Nat⟩.
We can now apply translateX to objects of ⟨x : Nat, y : Nat⟩, but this will implicitly
downcast them, as the result type is ⟨x : Nat⟩.

Bounded quantification solves this problem by introducing quantification over subtypes.
In this way the original subtype is named and can be given in the result type. With bounded
quantification we can write the type of translateX as

translateX : ΠR ≤ ⟨x : Nat⟩.Nat → R → R

which describes a function that takes an argument of some arbitrary record type R constrained
to be a subtype of ⟨x : Nat⟩. When a function of this type is applied to an argument of type
⟨x : Nat, y : Nat⟩, R is instantiated to ⟨x : Nat, y : Nat⟩ and the result is an object of the
same type.

System F≤[4] is System F[9, 22] extended with subtyping and bounded quantification, and
is a foundation for much of the research on subtyping in functional programming languages.
However there is one drawback: typechecking in F≤ is undecidable [20]. The crux of the
problem is the rule for subtyping between bounded quantifiers:

Γ ⊢ A1 ≤ B1 Γ, x ≤ A1 ⊢ B2 ≤ A2

Γ ⊢ Π(x ≤ B1). B2 ≤ Π(x ≤ A1). A2

When combined with a Top type, of which every type is a subtype, this rule causes the
subtyping relation to become undecidable, which in turn causes typechecking to become
undecidable [2]. Various modifications have been proposed to get around this problem[6, 23].
For example, disallowing Top in the bounds of quantifiers or requiring A1 = B1 in the rule
above. Each has its own trade-offs in terms of expressiveness and algorithmic practicality.

Because of this undecidability result and the difficulties in extending System F with
bounded quantification, many researchers have thought that extending dependent type
theories with bounded quantification would also be problematic, or at least, it would not be
an easy task. This has turned out to be mistaken. We take up this challenge in this paper
and show that bounded quantification can be modelled by subtype universes in a way that
maintains nice meta-theoretic properties. Moreover, our system is a full dependent type
theory, providing richer types than F≤.

With subtype universes, bounded quantification can be modelled using normal Π types:
the type ΠX : U(A).B is equivalent to ΠX ≤ A.B. However it is important to note that
Π types cannot model all uses of subtype universes. A subtype universe U(A) is a type of
types, whereas Π is a type of functions. Using subtype universes we can construct types such
as A → U(A). The right hand side of this function type is a type whose objects are subtypes
of A, and there is no equivalent to this using Π types.

We use coercive subtyping, which is a subtyping system well suited to type theories due to
its preservation of canonicity. The system UTT[C] is an extension of UTT [11] with coercive
subtyping. We further extend this system with support for subtype universes, forming the
system UTT[C]U . The extension consists of a handful of new syntactic forms and six new
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typing rules, which are described in Section 2. Working in a dependent type theory rather
than a weaker language allows us to apply the concept to a wide range of fields. Section 3
describes examples applicable to programming, formalisation and natural language semantics.
Section 4 proves several important meta-theoretic properties, including logical consistency
and strong normalisation. Section 5 discusses the design decisions we have taken and some
interesting alternatives.

2 Subtype Universes

In Martin-Löf’s intuitionistic type theory [17] the concept of a universe is introduced to
represent a collection of types which is closed under specific type-forming operations. Typically
one starts by defining a group of base type-forming operations and then one defines a universe
Type0 which contains the closure of these operations. Type0 is itself a type, and can be used
in combination with other type-forming operations to form new types. For example, we can
construct the polymorphic identity function ΠT : Type0. Πx : T. T . A function with this
type can be applied to any type in Type0, but not to Type0 itself. We can construct a more
powerful type for the identity function by repeating the process: we define a new universe
Type1 which contains the closure of all type-forming operations including Type0. We can
then construct the type Π(T : Type1). Π(x : T ). T , objects of which can be applied to Type0.
This process can be iterated indefinitely, forming a hierarchy of predicative universes, each
one stronger than the previous one. This hierarchy allows us to quantify over arbitrarily large
collections of types, providing great proof-theoretic strength. At the same time, the absence
of a “type of all types” means that it neatly avoids Girard’s Paradox[8]. Intuitively, this
construction of universes is an application of the reflection principle well known to set theory,
and there are analogous constructions in other fields (such as the Grothendieck universes of
category theory). Universes are typically expressed in either Tarski style or Russell style.
Tarski style is more explicit, and to avoid ambiguity it is the style we use here.

2.1 Tarski style universes
The Tarski formulation introduces a new type for each universe, objects of which are names
for other types. Alongside, we introduce a family of operators to map names to their
corresponding types. We will briefly walk through this construction, as our system builds on
some of the concepts. Firstly, to represent each universe we form a type Typei, where i is a
positive integer indicating the level of the universe.

Γ valid
Γ ⊢ Typei : Type

Objects of the universe Typei are names of other types. For each universe we introduce a
reflection operator Ti which maps names in Typei to their corresponding types.

Γ ⊢ a : Typei

Γ ⊢ Ti(a) : Type

Now whenever we introduce a new type to the system, we also introduce its name in each
universe. For example, if we introduce a type Nat of natural numbers then we would also
add the following axiom, which states that each universe contains a name nat for Nat.

TYPES 2020



9:4 Subtype Universes

Γ valid
Γ ⊢ nati : Typei

We also add rules defining how Ti behaves on these new names:

Γ valid
Γ ⊢ Ti(nati) = Nat : Type

Finally, for each universe we introduce a lifting operator ti which “lifts” names from a
universe Typei into the successive universe Typei+1.

Γ ⊢ a : Typei

Γ ⊢ ti(a) : Typei+1

Γ ⊢ a : Typei

Γ ⊢ T(ti(a)) = T(a) : Type

Thus (informally) for the type Nat we have a name nat0 in Type0, and T0(nat0) yields Nat.
We can apply the lifting operator t1 to this name, giving t1(nat0) = nat1, and of course
T1(nat1) = Nat. We can lift again, giving t2(nat1) = nat2, and so on.

2.2 Coercive subtyping
Coercive subtyping [12, 15] is a model of subtyping in type theories which expresses the
subtyping relationship via a specific coercion, which is a function from the subtype to the
supertype. It is a powerful form of subtyping which is particularly well suited to type theories
with canonical objects, as it preserves canonicity [15]. A type theory T can be extended
with coercive subtyping by adding two new judgement forms, for subtyping and subkinding.
We will focus on the former; for a full description of this extension we refer the reader to
[15]. The subtyping judgement is written Γ ⊢ A ≤c B : Type. It declares that A is a proper
subtype of B via a coercion c : (A)B.1 There are associated rules that define subtyping to
be congruent and transitive, among other things. A particularly important addition is the
coercive definition rule:

Γ ⊢ f : (x : B)C Γ ⊢ a : A Γ ⊢ A ≤c B

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

This rule states that if A ≤c B, then a function f , despite having domain B, may be applied
to an object a of A. When this happens, it is equal to f(c(a)), which is the application of
f to the coercion of a to an object of B, using the specific coercion c. This is the primary
mechanism by which coercive subtyping relations are put to work.

1 The systems described in this paper are defined in the meta-level framework LF, which is a typed
version of Martin-Löf’s Logical Framework. Where appropriate we will use LF syntax. In brief, (x : A)B
is the type of a meta-level function from A to B, where x : A is bound in B. [x : A]b is a meta-level
function from an object of A to an expression b, where x : A is bound in b. See [11] for a full description
of the language.
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Finally, we add a set C of axiomatic subtyping judgements. The only restriction on C
is that it must be coherent. This means that all coercions between any two types A and B

must be the same, i.e. A ≤c B and A ≤c′ B implies c = c′. We can then write T [C] for the
system formed by extending T with coercive subtyping and a coherent set C of axiomatic
subtyping judgements. A key property of this process is that T [C] is a conservative extension
of T : any T -judgement is derivable in T [C] if and only if it is derivable in T .

Coercive subtyping is a conservative extension of type theory, as stated in the following
result, where T is either the type theory UTT [11] or Martin-Löf’s type theory [19]. For
example, a corollary of the following theorem is that T [C] is logically consistent if T is.

▶ Theorem 1 (Conservativity [15]). For any coherent set C of coercion judgements, T [C] is
equivalent to a system that is a conservative extension of the type theory T .

Extending the type theory UTT [11] with coercive subtyping yields the system UTT[C]
(“replacing” T by UTT ), and it is this system that we build on in this paper. Specifically,
we extend UTT[C] with additional syntax and rules concerning subtype universes, yielding a
system we call UTT[C]U .

2.3 The system UTT[C]U

Our system is an extension of UTT [11], although any type theory with a predicative universe
hierarchy is suitable. The extension consists of some new syntactic forms and six new typing
rules. The syntactic forms are Ui(A), TA

Ui
, n(A) and ui(A). Ui(A) is a subtype universe

parameterised by the type A. TA
Ui

is an operator parameterised by the subtype universe
Ui(A). n(A) is a meta-level operation which gives the name for the type A. Similarly, ui(A)
is a meta-level operation which gives the name for the subtype universe Ui(A). These forms
are given meaning via six new typing rules. The rules are given in Figure 1. They can be
divided into four groups, which we call formation (U-FORM), introduction (U-INTRO),
reflection (U-REFL1, U-REFL2) and predicativity (U-PRED1, U-PRED2). Note that these
are convenient labels rather than precise categorisations.

The formation rule (U-FORM) introduces a subtype universe Ui(A) for every type A

which has a name in a traditional universe Typei. We apply a single restriction in the form
of the side condition LΓ(A) = i, which requires that the type level of A is equal to i.

Type levels are explained in Definition 2, but informally the level of a type is the index
of the smallest traditional universe in which the type has a name. For example, Bool has
type level 0 whilst Type0 has type level 1. Type levels are important because they allow us
to determine “size” of a type. By annotating every subtype universe with a type level, we
syntactically expose a lower bound for the type when placing it in the traditional universe
hierarchy. For example, we cannot allow the subtype universe U2(Type1) to have a name
in Type0, as Type1 is a strictly larger type. We prevent this by ensuring that any subtype
universe Ui(A) has a name only in the traditional universe Typei+1 (see rules (U-PRED1)
and (U-PRED2)).

▶ Definition 2 (Type Level). For any type A in a context Γ, in UTT[C] or UTT[C]U , its
type level LΓ(A) is defined as follows:

If ∃P. Γ ⊢ Prf(P ) = A : Type, LΓ(A) =df −1
Otherwise, LΓ(A) is the least m such that ∃a. Γ ⊢ Tm(a) = A : Type

Since every type in UTT[C] and UTT[C]U has a name in some universe, Definition 2 is well
defined for all types.
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9:6 Subtype Universes

U-FORM
Γ ⊢ Ti(a) = A : Type

Γ ⊢ Ui(A) : Type
(LΓ(A) = i)

U-INTRO
Γ ⊢ Ti(a) = A : Type Γ ⊢ B ≤c A : Type

Γ ⊢ n(B) : Ui(A)
(LΓ(B) ≤ LΓ(A))

U-REFL1
Γ ⊢ n(B) : Ui(A)

Γ ⊢ TA
Ui

(n(B)) : Type

U-REFL2
Γ ⊢ Ti(a) = A : Type Γ ⊢ B ≤c A : Type

Γ ⊢ TA
Ui

(n(B)) = B : Type
(LΓ(B) ≤ LΓ(A))

U-PRED1
Γ ⊢ Ui(A) : Type

Γ ⊢ ui(A) : Typei+1

U-PRED2
Γ ⊢ Ui(A) : Type

Γ ⊢ Ti+1(ui(A)) = Ui(A) : Type

Figure 1 The typing rules for subtype universes. The extension of UTT[C] by these rules forms
the system UTT[C]U .

It is important to note that because proof types (types of the form Prf(P ) for some
proposition P ) have a defined type level of −1, we cannot form subtype universes of them.
This is because the premiss of (U-FORM) is Γ ⊢ Ti(a) = A : Type, where i = LΓ(A). There
is no operator T−1 in UTT[C], and therefore we cannot derive this judgement for proof
types. Proof types can have names in other subtype universes, if there exists a corresponding
subtyping relation, but the inverse is not possible. Intuitively, proof types are not data types
and one usually does not consider subtyping relationships between them. We therefore do
not consider subtype universes of a proof type. This decision is a point in the design space
and there are alternative options. We discuss some of these in Section 5.

The introduction rule (U-INTRO) defines the membership of subtype universes. If a type
B is a subtype of A, then its name, given by n(B), is an object of the subtype universe of A.
As we shall see, we will be able to convert from n(B) to B. In this way we represent the
concept that B is a “member” of Ui(A). Again, there is an additional restriction on this rule:
the type level of B must not be greater than the type level of A. This restriction ensures
that we can translate derivations in our system into derivations in UTT[C], and is critical in
proving some meta-theoretic properties, as we will describe shortly.

We now have a connection between subtypes of A and their corresponding names in Ui(A).
The reflection rules (U-REFL1) and (U-REFL2) complete the circle by relating the names
back to their subtypes. (U-REFL1) introduces an operator TA

Ui
, which is parameterised

by a type A and its type level i. For any object n(B) in Ui(A), TA
Ui

(n(B)) is a type.
(U-REFL2) then tells us what type: TA

Ui
(n(B)) is equal to the type B. This rule has the
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same side condition as (U-INTRO), which has no effect on the semantics but simplifies the
metatheory. Together, these four rules are effectively a translation of (UNIVERSE-FORM)
and (UNIVERSE-INTRO) into the Tarski universe formulation.

Finally, we relate subtype universes to the traditional universe hierarchy. Rules (U-
PRED1) and (U-PRED2) state that a subtype universe Ui(A) has a name in the universe
Typei+1. Placing subtype universes into the traditional universes is a design choice, rather
than a necessary construction. We discuss this approach and alternatives in Section 5.

3 Applications

Subtype universes have a clear use as a way to model bounded quantification, and this section
describes some examples in programming, formalisation and natural language semantics. As
subtype universes are first-class types in the system they are inherently more flexible than
bounded quantifiers and we expect there are other applications to be discovered.

3.1 Bounded Quantification
With subtype universes we can straightforwardly construct an equivalent to the bounded
quantifier ΠA ≤ B. Continuing our running example, the function translateX can be given
the following type:

translateX : Πr : Ui(⟨x : Nat⟩).Nat → T⟨x:Nat⟩
Ui

(r) → T⟨x:Nat⟩
Ui

(r)

Applying translateX to ⟨x = 1, y = 2⟩ gives a result of type T⟨x:Nat⟩
Ui

(n(⟨x : Nat, y : Nat⟩)),
which reduces to ⟨x : Nat, y : Nat⟩. Thus we retain the information that the result is an
two-dimensional coordinate.

This kind of extensibility has many applications in programming, where it is useful to
be able to deal with partially specified data. As a software system is evolved, data is often
embellished with new fields. Functions like translateX will continue to work as new fields
are added to the records it is applied to, allowing for easy and type-safe system extension.

Being a type itself, a subtype universe provides more flexibility than bounded quantifica-
tion. For example, a subtype universe can appear in both the domain and codomain position
of a function type, whereas bounded quantification is only valid in the domain. For example,
we can construct types such as A → U0(A), which are functions from objects of type A to
subtypes of A. Another example is the type

U0(A) → U0(B) → U0(Σ(A, [x : A]B))

Given a subtype of A and a subtype of B, a function of this type will return a subtype of
their sum, Σ(A, [x : A]B).

3.2 Extending predicates to subtypes
With coercive subtyping it is straightforward for a predicate P : (x : A)Prop on some type
A to be extended to all subtypes of A, since we can always convert objects of a subtype to
objects of the supertype. For example, given B ≤c A and b : B then P (b) becomes P (c(b))
after coercion insertion, which is well typed.

However this fact is not expressed in the type. We rely on meta-level reasoning to know
that the domain of P is implicitly extended to all subtypes of A. If we rewrite P to use
subtype universes we can better express this property:

P : (t : Ui(A))(x : TA
Ui

(t))Prop

TYPES 2020
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Here P is now a predicate on subtypes of A. Its first argument is the name of a type in the
subtype universe for A, and its second argument is an object of that type, as before. We
can apply P both to A and its subtypes: P (n(A), a) and P (n(B), b) are both well typed,
assuming a : A and b : B.

3.3 Natural language semantics
As well as applications in programming, subtype universes have proved to be useful in
formalising the semantics of natural language. In order to describe this application we will
first introduce some basic concepts in natural language semantics. Then we will describe
how subtype universes can model gradable adjectives.

3.3.1 Montague Grammar
The seminal treatment of natural language semantics is the system developed by Montague in
the 1970s [18]. Known as Montague Grammar, this system uses an embedding of higher-order
logic in the simply typed lambda calculus to model sentences of natural language. Language
constructs are divided into categories: sentences, verb phrases, noun phrases, and common
nouns, amongst others. Each category is assigned a type with respect to the two atomic
types e and t, representing objects and propositions respectively. A complete sentence (e.g.
“Socrates is a man”) is regarded as a proposition, and thus has type t. Verb phrases such as
“is a man” form complete propositions when supplied with an object, and therefore have type
e → t. Common nouns are interpreted as predicates. For example, the common noun “man”
is represented by the function λx.man(x). Common nouns therefore have the type e → t.
We can also make use of logical operators such as implication (⇒), universal quantification
(∀) and existential quantification (∃): the sentence “all men are mortal” can be expressed as
∀x. man(x) ⇒ mortal(x).

There are two notable downsides to this approach. Firstly, the use of a single type e for
all objects means there is no distinction between different classes of objects, and we can
therefore form nonsensical sentences such as “the colour green plays football”. Secondly, the
interpretation of common nouns (and indeed, noun phrases) is not intuitive. One would
naturally expect common nouns to be interpreted simply as objects.

3.3.2 MTT Semantics
An alternative model of natural language based on Modern Type Theories (MTTs) [21][14]
provides a solution to these problems. In MTT semantics, common nouns are interpreted
as types in a type theory such as UTT. The interpretation of “man” is as the type Man,
and the sentence “Socrates is a man” is interpreted as Socrates : Man. We can construct
as many types as necessary to precisely describe the context, for example a type Man

representing men and a type Human representing humans. This naturally leads to problems
when a particular object can be seen to inhabit multiple types. For example, both of the
judgements Socrates : Man and Socrates : Human seem reasonable. To solve this we
can apply coercive subtyping. We might define Man ≤c Human via some coercion c, and
then we have Socrates : Man and c(Socrates) : Human. A full comparison of Montague
grammar with MTT semantics is not within the scope of this paper; we refer the reader
to [7] for details.

In the context of MTT semantics, subtype universes turn out to be useful in modelling
gradable adjectives [16]. Gradable adjectives (words such as “tall”) can be interpreted as
predicates which involve comparison of a measurement on the entity with some threshold
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δ : UTT[C]U → UTT[C]
δ(Ui(A)) = Typei

δ(ui(A)) = typei

δ(TA
Ui

) = Ti

δ(Type) = Type
δ(El(A)) = El(δ(A))

δ([x : A]B) = [x : δ(A)]δ(B)
δ((x : A)B) = (x : δ(A))δ(B)

δ(f(x)) = δ(f)(δ(x))
δ(c) = c

Figure 2 The transformation δ converts terms in UTT[C]U to terms in UTT[C].

value. In the case of “tall”, the measurement is the height of the argument. Furthermore,
the threshold often varies based on the type of the argument. The threshold height that is
considered tall for a human is very different from the height considered tall for a building.
We will describe how “tall” can be interpreted in UTT[C]U , thereby motivating the use of
subype universes in formal semantics.

We first collect together into a new universe T all the common nouns for which it makes
sense to measure a height. T may contain, amongst others, (names for) the types Human

and Building. Each of these may have subtypes such as Man ≤ Human. We will define a
function height which measures the height of an object of some type in the universe T , and
a function ξ which calculates the threshold height for a particular type to be considered tall:

height : ΠA : T.ΠB : U0(A).B → Nat

ξ : ΠA : T.U0(A) → Nat

Note that height and ξ are defined over all subtypes of all types in T . For simplicity, we
assume that all types in T have names in the universe Type0. We can then define tall as
follows:

tall : ΠA : T. ΠB : U0(A).B → Prop

tall(A, B, x) = height(A, B, x) ≥ ξ(A, B)

Compared to other approaches subtype universes provide a simpler semantic construction
for gradable adjectives, and may be useful in modelling other linguistic features.

4 Metatheory

The system UTT[C]U retains many of the nice meta-theoretic properties of its base system
UTT[C]: logical consistency, strong normalisation and subject reduction. In particular,
logical consistency and strong normalisation results can be transferred from UTT[C] because
our new rules are admissible in UTT[C] after applying a simple syntactic transformation.
This transformation is named δ, and it converts terms of UTT[C]U to terms of UTT[C], as
shown in Figure 2.

TYPES 2020



9:10 Subtype Universes

For any type A, δ converts the universe Ui(A) to Typei, which is a valid type in UTT[C].
For any object A, δ converts ui(A) to typei. For any object a, δ converts an application of
the subtype universe lifting operator TA

Ui
(a) to an application of the traditional universe

lifting operator Ti(a). For any constant c, δ leaves c unchanged. The translation is extended
to other syntax forms by recursion on their structure, ensuring that the result contains none
of the syntax introduced by our extension. Using δ we can transform the typing rules in
Figure 1, producing rules in the syntax of UTT[C]. These are shown in Figure 3.

In this section we will need to refer to derivations in both UTT[C]U and UTT[C]. To
avoid confusion we will use ⊢U for judgements in UTT[C]U and ⊢ for judgements in UTT[C].
Contexts in UTT[C]U will be written Γ whereas contexts in UTT[C] will typically be of the
form δ(Γ).

We first note that the side condition LΓ(B) ≤ LΓ(A) in (U-INTRO) and (U-REFL2)
provides information about the traditional universes in which A and B have names.

▶ Lemma 3. If Γ ⊢ Ti(a) = A : Type, Γ ⊢ B : Type and LΓ(B) ≤ LΓ(A) then there exists
a name b : Typej such that Γ ⊢ Tj(b) = B : Type for some j ≤ i.

Proof. There are six cases to consider:
1. LΓ(B) = LΓ(A) = −1
2. LΓ(B) = −1, LΓ(A) ≥ 0
3. LΓ(B) ≥ 0, LΓ(A) = −1
4. LΓ(B) = LΓ(A) ≥ 0
5. LΓ(B) > LΓ(A) ≥ 0
6. LΓ(B) < LΓ(A) ≥ 0
Cases 3 and 5 violate the premiss LΓ(B) ≤ LΓ(A) and can be discounted.

For cases 1 and 2 we follow the same reasoning: via the definition of type level (Definition 2)
there exists some PB such that Γ ⊢ Prf(PB) = B : Type. Thus we have Γ ⊢ T0(t0(PB)) =
B : Type. We also have i ≥ 0 (otherwise Ti would not be defined) and therefore we can
choose j = 0 and b = t0(PB) to satisfy the conclusion.

Cases 4 and 6 also follow the same reasoning: we use the definition of type level to get
∃b′. Γ ⊢ TLΓ(B)(b′) = B : Type. Choosing j = LΓ(B) and b = b′ satisfies the conclusion. ◀

▶ Lemma 4. The rules in Figure 3 are admissible in UTT[C].

Proof. The conclusions of (δ-U-FORM), (δ-U-PRED1) and (δ-U-PRED2) are all axioms in
UTT, so these rules are trivially admissible. (δ-U-REFL1) follows from the definition of Ti,
which has type (Typei)Type. This leaves (δ-U-INTRO) and (δ-U-REFL2).

For (δ-U-REFL2), we consider the premiss δ(Γ) ⊢ Ti(a) = δ(A) : Type and side condition
Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)). By Lemma 3 we can deduce ∃j ≤ i. δ(Γ) ⊢ Tj(b) = δ(B) : Type,
where b is the name for δ(B) in Typej . Since the traditional universes form a cumulative
hierarchy we can conclude δ(Γ) ⊢ Ti(b′) = δ(B) : Type, where b′ is the name for δ(B) in
Typei.

For (δ-U-INTRO), we follow the same derivation. From δ(Γ) ⊢ Ti(b) = δ(B) : Type we
can then conclude δ(Γ) ⊢ b : Typei. ◀

▶ Theorem 5 (Logical consistency). There is no proof M such that Γ ⊢U M : ∀X : Prop.X.

Proof. By contradiction. Assume there is an M such that ⊢U M : ∀X : Prop.X. Then it
follows that ⊢ δ(M) : δ(∀X : Prop.X), and therefore ⊢ δ(M) : ∀X : Prop.X. This implies
that UTT[C] is logically inconsistent, which is false [15]. ◀
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δ-U-FORM
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ Typei : Type
(Lδ(Γ)(δ(A)) = i)

δ-U-INTRO
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ δ(B) ≤δ(c) δ(A) : Type
δ(Γ) ⊢ n(B) : Typei

(Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)))

δ-U-REFL1
δ(Γ) ⊢ n(B) : Typei

δ(Γ) ⊢ Ti(n(B)) : Type

δ-U-REFL2
δ(Γ) ⊢ Ti(a) = δ(A) : Type

δ(Γ) ⊢ δ(B) ≤δ(c) δ(A) : Type
δ(Γ) ⊢ Ti(n(B)) = δ(B) : Type

(Lδ(Γ)(δ(B)) ≤ Lδ(Γ)(δ(A)))

δ-U-PRED1
δ(Γ) ⊢ Typei : Type

δ(Γ) ⊢ typei : Typei+1

δ-U-PRED2
δ(Γ) ⊢ Typei : Type

δ(Γ) ⊢ Ti+1(typei) = Typei : Type

Figure 3 The rules in Figure 1 after transformation by δ.

▶ Definition 6 (Reduction). We write M ⇝ N to mean that applying a single step of
reduction to the expression M yields the expression N . We write M ⇝∗ N to mean that
applying zero or more steps of reduction to the expression M yields the expression N .

▶ Lemma 7 (δ preserves one-step reduction). For every term M in UTT[C]U , if M ⇝ N

then in UTT[C] we have δ(M)⇝ δ(N).

Proof. See appendix A. ◀

▶ Lemma 8 (δ preserves multi-step reduction). For every term M in UTT[C]U , if M ⇝∗ N

then in UTT[C] we have δ(M)⇝∗ δ(N).

Proof. There are two cases to consider: a reduction sequence of zero steps and a reduction
sequence of one or more steps. For the former case we have M = N and therefore it follows
that δ(M) = δ(N) and hence δ(M) ⇝∗ δ(N). The latter case follows from Lemma 7 by
induction. ◀

▶ Theorem 9 (Strong Normalisation). If Γ ⊢U M : A then M is strongly normalisable. In
other words, every sequence of reductions starting from M is finite.

Proof. Assume that Strong Normalisation does not hold for UTT[C]U - i.e. there exists a
term M in UTT[C]U with an infinite reduction sequence. By Lemma 8 it follows that there is a
corresponding infinite reduction sequence in UTT[C] for δ(M). This is a contradiction because
Strong Normalisation holds for UTT[C], as it is a conservative extension of UTT [15]. ◀

TYPES 2020
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▶ Theorem 10 (Subject Reduction). If Γ ⊢U M : A and M ⇝ N , then Γ ⊢U N : A.

Proof. UTT[C]U is an extension of UTT[C], for which subject reduction holds. Therefore
it is sufficient to show that the new syntax forms and rules we have introduced preserve
this property. We proceed by induction on the structure of terms. Most cases follow
straightforwardly by the induction hypothesis, except for the two base cases induced by the
reduction rules urefl and upred, derived from the typing rules (U-REFL2) and (U-PRED2).
Given the premises of each rule we can derive identical types for either side of the equality
in the conclusion. For urefl we have M ≡ TA

Ui
(n(B)), N ≡ B and M ⇝urefl N . From the

premises of (U-REFL2) we can then derive Γ ⊢U M : Type and Γ ⊢ _UN : Type:

Γ ⊢U Ti(a) = A : Type Γ ⊢U B ≤c A : Type
(U-INTRO)

Γ ⊢U n(B) : Ui(A)
(U-REFL1)

Γ ⊢U TA
Ui

(n(B)) : Type
(definition of M)

Γ ⊢U M : Type

Γ ⊢U A ≤c B : Type
Γ ⊢U B : Type

(definition of N)
Γ ⊢U N : Type

For upred we have M ≡ Ti+1(ui(A)), N ≡ Ui(A) and M ⇝upred N . From the premiss
of (U-PRED2) we already have Γ ⊢U N : Type. We can then derive Γ ⊢U M : Type as
follows:

Γ ⊢U Ui(A) : Type
(U-PRED1)

Γ ⊢U ui(A) : Typei+1 (definition of Ti+1)
Γ ⊢U Ti+1(ui(A)) : Type

(definition of M)
Γ ⊢U M : Type

The four new syntactic forms, Ui(A), ui(A), n(B) and TA
Ui

(n(B)), are irreducible under
the existing reduction rules of UTT[C] and so do not affect the subject reduction property of
the original rules. Therefore subject reduction holds for UTT[C]U . ◀

5 Discussion on design choices

Whilst most aspects of our system follow directly from the pseudo rules given in Section 2 or
from metatheoretic constraints (for example, the annotation of subtype universes with type
levels), some parts reflect specific design choices that could be modified. These areas concern
how subtype universes interact with other universes, such as the traditional predicative
universes Typei, the impredicative universe Prop and even other subtype universes. We
might ask if a particular subtype universe can have a name in the universe Type1, or vice
versa. Or even: can we construct subtype universes containing names for other subtype
universes? Whilst these questions are formally interesting, we have not identified any clear
applications of alternative designs.

Firstly, our rules permit universes such as U1(Type0), meaning that judgements like
Type0 : U1(Type0) are derivable. In the opposite direction, the rules (U-PRED1) and
(U-PRED2) define that Ui(A) : Typei+1. However, these two rules are optional. We include
them so that the traditional universes continue to allow quantification over “all types”, but
the system remains standing if they are removed. There are three main options for this point
in the design.
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The first option is that subtype universes have names in the same traditional universe as
the type they are parameterised by - i.e. Ui(A) : Typei. It is straightforward to show that
this option leads to inconsistency when translated to UTT[C]. Applying δ to the judgement
Γ ⊢ Ui(A) : Typei yields δ(Γ) ⊢ δ(Ui(A)) : δ(Typei), which simplifies to δ(Γ) ⊢ Typei : Typei.

The second option is that subtype universes are contained in the traditional universe
directly “above” the universe of the type they are parameterised by: Ui(A) : Typei+1. So
for some base type T : Type0, U0(T ) : Type1. When translated to UTT this judgement
becomes (in the general case) Γ ⊢ Typei : Typei+1 which is a derivable judgement in UTT.
This, therefore, seems the most natural option for the relation between subtype universes
and traditional universes, not least because Typei+1 is the smallest universe in which we can
place Ui(A) without encountering paradoxes.

The third option is not to include subtype universes as objects in the traditional universe
hierarchy. This is equivalent to removing the rules (U-PRED1) and (U-PRED2). The
resulting system is still admissible in UTT, and therefore retains the desired meta-theoretic
properties. However this weakens the traditional universes, because there are now types that
they cannot capture (the subtype universes).

Subtype universes can be formed from any type in our system, with the except of proof
types of propositions, i.e. types of the form Prf(P ). We have made this decision to simplify
the typing rules, but there is also an intuitive argument that subtyping between proof types
is not desirable. It is important to note that whilst we cannot construct subtype universes
of proof types, these types can still have names in the subtype universes of other types.
Subtype universes of proof types can be supported by a small modification to the system:
removing the first clause from Definition 2. This has the auxiliary effect of making the
system independent of Prop entirely. We have not fully explored the relationship between
subtype universes and the impredicative universe Prop (and its related types); further work
is needed in this area.

Subtyping as a relation has the property of transitivity:

Γ ⊢ T ≤c A : Type Γ ⊢ A ≤c′ B : Type
Γ ⊢ T ≤c′◦c C : Type

By analogy with set theory, we might expect there to be a corresponding subtyping relation
between the subtype universes of A and B. The (informal) reasoning for this is as follows:
every type with a name in Ui(A) is a subtype of A, and therefore by transitivity it is also a
subtype of B, and must have a name in Uj(B). To formalise this argument we must find
a coercion between names of T in Ui(A) and names of T in Uj(B). This is not generally
derivable in our system as-is, but we can support it by the addition of the following rule:

U-EQUIV
Γ ⊢ A ≤c B : Type

Γ ⊢ TA
Ui

(t) = T : Type Γ ⊢ TB
Uj

(t′) = T : Type
Γ ⊢ tA,B

i,j (t) = t′ : Uj(B)
(LΓ(A) ≤ LΓ(B))

Here we introduce a lifting operator tA,B
i,j which takes a name in the universe Ui(A) to a

name of the same type in Uj(B). This operator can act as a coercion between universes,
allowing us to state the following subtype relation:

Γ ⊢ Ui(A) ≤tA,B
i,j

Uj(B)

TYPES 2020
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By (U-PRED2) we have LΓ(Uj(B)) = j + 1, and therefore we can derive

Γ ⊢ Uj+1(Uj(B)) : Type
Γ ⊢ TB

Uj
(n(Ui(A))) = Ui(A) : Type

6 Conclusion

Subtype universes are a novel and useful construct, providing amongst other things a
decidable alternative to bounded quantification. We have seen that a coercive subtyping
system can be extended to support subtype universes with the addition of six typing rules.
Our implementation builds on UTT[C], an existing system supporting coercive subtyping.
We prove logical consistency, strong normalisation and subject reduction for our system.

We have extended UTT[C] with subtype universes in a way that preserves its nice
metatheoretic properties. In this process we rely on the existence of the predicative universes
Typei in order to syntactically convert subtype universes into predicative universes. However
it is important to note that this is done only to make the metatheoretic proofs straightforward.
An early abstract of this paper [16] specified a simpler system where subtype universes were
not annotated with a type level. This formulation was entirely independent of UTT’s
predicative universes, but proving the admissibility of the typing rules was difficult. As a
result, it is possible that subtype universes can be formulated without predicative universes;
this would be an interesting subject for further work.

Although we believe that the system UTT[C]U has the Church-Rosser property, we
have not succeeded in proving it. We also leave unanswered the question of exactly why
a system with subtype universes enjoys decidable typechecking whilst traditional bounded
quantification does not. Notably absent in our system is the maximal type Top of which
every other type is a subtype. Indeed it is not clear how one could introduce such a type in
a system with a predicative universe hierarchy, for the same reason that we cannot introduce
a type of all types. This distinction is worthy of further investigation.

Related Work. Subtype universes bear similarities to Cardelli’s power type [3] Power(A),
a type containing all subtypes of A. Power types are constructed in the context of a system
of structural subtyping, where subtyping relations are determined by the structure of types
rather than by arbitrary axioms. This is motivated by the desire for types to be “self-
describing”, simplifying typechecking and enabling features like the type-safe (de)serialisation.
There is no distinct subtyping relation; the judgement ⊢ A : Power(B) reads “A is a subtype
of B” and is abbreviated ⊢ A ≤ B. A notable typing rule is that of Power Subtyping, written:

Γ ⊢ B ≤ A

Γ ⊢ Power(B) ≤ Power(A)

This rule states that if B is a subtype of A then the power type of B is a subtype of the
power type of A. The conclusion can also be written Γ ⊢ Power(B) : Power(Power(A)).
Written this way, it is clear that this has the same effect as the rule (U-EQUIV) described in
Section 5.

Another important aspect of Cardelli’s system is that it includes the axiom Type : Type,
well known to be logically inconsistent. A full discussion of the problems with this property
is beyond the scope of this paper; we merely note that, as an extension of UTT, our system
does not share this property.

Aspinall’s λP ower [1] is a predicative and simplified alternative to Cardelli’s system, but
it has been difficult to prove some of its metatheoretic properties (such as subject reduction).
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A Proof of Lemma 7

▶ Lemma (δ preserves one-step reduction). For every term M in UTT[C]U , if M ⇝ N then
in UTT[C] we have δ(M)⇝ δ(N).

Proof. By induction on the terms of UTT[C]U . For each reduction step M ⇝R N in
UTT[C]U via a computation rule R we will show that there is a reduction δ(M)⇝S δ(N) in
UTT[C] via a (possibly identical) rule S. In the special case where δ(M) = M , we will show
that δ(N) = N . There are eight reduction (or computation) rules in UTT [10]:
1. ([x : K]k′)k ⇝β [k/x]k′

2. E∀(A, P, R, f, Λ(A, P, g))⇝E∀ f(g)
3. Ti+1(typei)⇝typei Typei

4. T0(prop)⇝prop Prop

5. Ti+1(ti+1(a))⇝ti+1 Ti(a)
6. T0(t0(P ))⇝prf Prf(P )
7. the computation rule for inductive types E[Θ̄]
8. Ti(µi[Θ̄])⇝µ M[Θ̄]
Our extension adds two more:
1. TA

Ui
(n(B))⇝urefl B

2. Ti+1(ui(A))⇝upred Ui(A)
We will consider the last two rules in detail. The others follow straightforwardly from the
definition of δ. By induction we can therefore extend the result to all expressions in UTT[C]U .

▶ Case 1 (M ⇝urefl N). This rule eliminates n(B), the name for a type B in the subtype
universe Ui(A).

TA
Ui

(n(B))⇝urefl B

δ(TA
Ui

(n(B))) = δ(TA
Ui

)(δ((n(B))))
= Ti(n(δ(B)))
⇝X δ(B)

where X stands for the relevant reduction rule reflecting a name in a traditional universe to
its type. For example, if B is an inductive type then X stands for the rule ⇝µ.

▶ Case 2 (M ⇝upred N). This rule eliminates ui(A), the name for the subtype universe
Ui(A).

Ti+1(ui(A))⇝upred Ui(A)
δ(Ti+1(ui(A))) = δ(Ti+1)(δ((ui(A))))

= Ti+1(typei)
⇝typei Typei

= δ(Ui(A)) ◀
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